DEVOIR SURVEILLE DE SCIENCES PHYSIQUES - 4

NOTE:

/ 20

Les réponses seront clairement <u>rédigées</u> sur une copie double. Une copie mal présentée sera sanctionnée de même qu'une réponse incomplète ou ambigue.

Physique (10 points)

Exercice 1 : Le principe d'inertie (5 points)

L'enregistrement du mouvement d'un mobile autoporteur sur une table horizontale est représenté ci-dessous. La durée entre deux positions est $\tau = 20$ ms.

- 1. Enoncer le principe d'inertie.
- **2.** Etude de la première phase :
 - a) Sur le schéma, identifier cette première phase. Quel est le mouvement du centre du mobile ?
 - b) Les forces s'exerçant sur le mobile se compensent-elles ? Justifier la réponse.
 - c) Représenter les forces s'appliquant au mobile
- **3.** Etude de la deuxième phase :
 - a) Sur le schéma, identifier cette seconde phase. Quel est le mouvement du centre du mobile ?
 - b) Que peut-on dire des forces appliquées au mobile ? Justifier.
 - c) Représenter les forces s'appliquant au mobile.
 - d) Déterminer la vitesse instantanée du mobile au point A₈.

Exercice 2 : Io et Jupiter (5 points)

<u>Io</u> est l'un des 63 <u>satellites</u> connus de <u>Jupiter</u>.

- 1. Calculer la valeur des forces d'interaction gravitationnelle s'exerçant entre ces deux astres, en exprimant le résultat en écriture scientifique et en ne conservant que le nombre de chiffres significatifs adapté.
- 2. Quelles sont les autres caractéristiques de ces deux forces ?
- 3. Représenter ces forces sur le schéma ci-dessous en précisant l'échelle utilisée.
- **4.** La pesanteur à la surface d'un astre de masse M et de rayon R est donnée par la relation : $g = G\frac{M}{R^2}$. Quelle est la valeur de la pesanteur à la surface de Io ? A la surface de Jupiter ?
- 5. Quel est le poids d'un objet de masse m = 5,00 kg à la surface de Io? A la surface de Jupiter?
- **6.** Quel est le poids de ce corps à la surface de la Terre ?

Jupiter	Echelle utilisée :
	↔

<u>Données</u> :	masse de Jupiter $M_J = 1,8988.10^{27} \text{ kg}$;	masse de la Terre $M_T = 5,97.10^{24} \text{ kg}$;
	rayon de Jupiter $R_J = 7,14.10^4 \text{ km}$;	rayon de la Terre $R_T = 6.37.10^3 \text{ km}$;
	masse de Io $M_{Io} = 8,933.10^{22} \text{ kg}$;	$G = 6,67.10^{-11} \text{ N.kg}^{-2}.\text{m}^2$;
	rayon de Io $R_{Io} = 1.8.10^3 \text{ km}$;	$g_{Terre} = 9.81 \ N.kg^{-1}$
	distance Io-Jupiter: 422000 km;	

Chimie (10 points)

Exercice 1 : Composition d'atomes et d'ions (4 points)

Compléter le tableau suivant : (A FAIRE SUR CETTE FEUILLE)

Atome ou ion	Ca ²⁺			О
Nom		atome de beryllium		
Symbole du noyau			$^{19}_{9}F$	¹⁶ ₈ O
Charge de l'entité chimique			-е	
Nombre de protons	20			
Nombre de neutrons	20	5		
Nombre d'électrons				
Structure électronique		$(K)^2 (L)^2$		

Exercice 2 : Magnésium et Contrex (6 points)

- 1. Soit un atome de magnésium caractérisé par les nombres Z = 12 et A = 24.
 - a) Préciser sa composition et donner le symbole de son noyau.
 - b) Quelle est la structure électronique de cet atome ?
- 2. Définir la notion d'élément chimique.
 - c) Que peut-on dire de deux atomes caractérisés par les couples (Z, A) suivants : (12, 25) et (12, 26) ? Justifier.

	²⁴ Mg	78,99 %
•	25 Mg	10,0 %
	26 Mg	11,01 %

- d) Enoncer les règles du « duet » et de l'octet. Quelle est la charge de l'ion magnésium ? Quelle est la formule de cet ion ? Donner la structure électronique de l'ion magnésium. Est-ce normal ?
- e) Combien de neutrons peut-il y avoir dans son noyau sachant que l'élément magnésium possède uniquement les trois isotopes donnés dans le tableau ci-dessus ?
- 4. Dans la nature, les proportions (en nombre d'atomes ou d'ions) des trois isotopes considérés sont données dans le tableau ci-dessus :
 - a) Quelle est la masse de chaque isotope?
 - b) Sachant que dans un litre de Contrex, il y a environ 2.10²¹ ions magnésium, calculer le nombre de chaque isotope que l'on consomme lorsqu'on boit un litre de cette eau.
 - c) Quelle est la masse des ions magnésium dans un litre de cette eau?