LES RÉACTIONS ACIDO-BASIQUES

<u>Question</u>: Qu'est-ce qu'une réaction acido-basique?

C'est une réaction chimique au cours de laquelle il y a un transfert de protons H^+ entre 2 réactifs dont l'un est qualifié d'acide et l'autre de base.

Commençons par définir un acide et une base selon Brönsted.

I- UN ACIDE ET UNE BASE SELON BRÖNSTED

Définition d'un acide selon Brönsted et définition d'une base selon Brönsted Questions :

- Donner la définition d'un acide selon Brönsted.
 Un acide, au sens de Brönsted, est une entité chimique (molécule ou ion) susceptible de céder au moins un proton H⁺
- Donner la définition d'une base selon Brönsted.
 Une base, au sens de Brönsted, est une entité chimique (molécule ou ion) susceptible de capter au moins un proton H⁺

Un acide et une base sont 2 entités chimiques qui peuvent constituer un couple acide/base. Passons à l'étude des couples acide/base selon Brönsted.

II - LES COUPLES ACIDE/BASE SELON BRÖNSTED

1 - <u>Définition et demi-équation acido-basique</u>

Questions:

- Qu'est-ce qu'un couple acide/base?
 Un couple acide/base est constitué de deux entités chimiques susceptibles de s'échanger un proton H⁺.
- Quelle est la demi-équation associée au couple HA/A^- ? $HA = A + H^+$

<u>Question</u>: Donner les 2 couples acide/base dans lesquels l'eau intervient.

<u>Remarque</u>: Les couples $H_3O^+_{(aq)}/H_2O_{(l)}$ et $H_2O_{(l)}/HO^-_{(aq)}$ sont les couples acide/base appelés couples de l'eau.

Questions:

- Dans le 1^{er} couple, l'eau est-elle un acide ou une base ? une base
- Dans le 2^{ème} couple, l'eau est-elle un acide ou une base ? un acide

L'eau peut-être à la fois un acide ou une base, on qualifie l'eau d'ampholyte ou d'espèce chimique ayant un caractère amphotère.

2 - <u>Notion d'ampholyte</u>

Question: Quelle définition donneriez-vous à un ampholyte?

Un ampholyte est une espèce chimique qui se comporte soit comme un acide soit comme une base. C'est une espèce chimique qui intervient dans 2 couples acide/base.

Exemples:

- L'eau H_2O : base du couple $H_3O^+_{(aq)}/H_2O_{(l)}$ et l'acide du couple $H_2O_{(l)}/HO^-_{(aq)}$

- L'ion hydrogénocarbonate HCO_3^- : base du couple $CO_2, H_2O_{(aq)}/HCO_3^-$ (aq) et l'acide du couple HCO_3^- (aq) HCO_3^- (aq)

3 - <u>Les indicateurs colorés acido-basiques</u>

<u>Question</u>: Quelle est la définition d'un indicateur coloré acido-basique?
Un indicateur coloré acido-basique est un couple acide/base dont la couleur de la forme acide est différente de la couleur de la forme basique.

Définition d'un indicateur coloré acido-basique

Passons à l'étude des réactions acido-basiques et à l'écriture de l'équation d'une réaction acido-basique.

III- LES RÉACTIONS ACIDO-BASIQUES

Une réaction acido-basique met en jeu l'acide d'un couple HA_1/A_1^- et la base d'un autre couple HA_2/A_2^- et traduit le transfert de protons H^+ de l'acide HA_1 vers la base A_2^- .

 HA_1 est un acide, il cède un proton H^+ : $HA_1 = A_1^- + H^+$

 A_2^- est une base, elle capte un proton \mathcal{H}^+ : $A_2^- + \mathcal{H}^+ = \mathcal{H}A_2$

Pour établir l'équation de la réaction acido-basique, on combine les deux demi-équations de façon à ce que les protons transférés n'apparaissent pas dans l'équation de la réaction:

$$\mathcal{H}A_1 + A_2^- \longrightarrow A_1^- + \mathcal{H}A_2$$

 $Acide 1 + base 2 \longrightarrow base 1 + Acide 2$

Passons à l'étude de quelques acides usuels.

IV- QUELQUES ACIDES USUELS

Nom de la solution acide	Formule de la solution acide	Couple acide/base qui intervient
Solution d'acide chlorhydrique	$(\mathcal{H}_3\mathcal{O}^+_{(aq)} + \mathcal{C}_{U_{(aq)}})$	H ₃ O ⁺ (aq)/H ₂ O(l)
Solution d'acide nitrique	$(\mathcal{H}_{3}O^{+}_{(aq)} + NO_{3}^{-}_{(aq)})$	H ₃ O ⁺ (aq)/H ₂ O(l)
Solution d'acide sulfurique	$(2 H_3 O^+_{(aq)} + S O_4^{2-}_{(aq)})$	H ₃ O ⁺ (aq)/H ₂ O(l)
Solution d'acide éthanoïque (acétique)	$C\mathcal{H}_3C\mathcal{O}_2\mathcal{H}_{(aq)}$	$C\mathcal{H}_3C\mathcal{O}_2\mathcal{H}_{(aq)}/C\mathcal{H}_3C\mathcal{O}^{2-}_{(aq)}$

Passons à l'étude de quelques bases usuelles.

V- QUELQUES BASES USUELLES

Nom de la solution basique	Formule de la solution basique	Couple acide/base qui intervient
Solution d'hydroxyde de sodium (soude)	(Na ⁺ (aq) + HO ⁻ (aq))	H2O(1)/HO (aq)
Solution d'hydroxyde de potassium (potasse)	(K ⁺ (aq) + HO ⁻ (aq))	H2O(1)/HO (aq)
Solution de carbonate de sodium	$(2 Nat_{(aq)} + CO_3^{2-}_{(aq)})$	$\mathcal{H}CO_{3}^{-}(aq)/CO_{3}^{2-}(aq)$
Solution d'ammoniac	NH _{3(aq)}	NH4 ⁺ (aq)/NH3(aq)

 $\underline{\textit{Remarque}}$: Ces produits sont très corrosifs \Rightarrow éviter tout contact avec la peau.

La dilution de solutions aqueuses d'acide ou de base s'accompagne d'un échauffement brutal, qui peut donner lieu à des projections \Rightarrow verser l'acide ou la base dans l'eau.